Events
Event Information:
-
Tue12Feb20194:00 pmLewis Hall 101
Colloquium: Frontiers of Multi-Messenger Black-Hole Physics
Stephen Taylor
Division of Physics, Mathematics and Astronomy
California Institute of TechnologyFrontiers of Multi-Messenger Black-Hole Physics
The bounty of gravitational-wave observations from LIGO and Virgo has opened up a new window onto the warped Universe, as well as a pathway to addressing many of the contemporary challenges of fundamental physics. I will discuss how catalogs of stellar-mass compact object mergers can probe the unknown physical processes of binary stellar evolution, and how these systems can be harnessed as standard distance markers (calibrated entirely by fundamental physics) to map the expansion history of the cosmos. The next gravitational-wave frontier will be opened within 3-6 years by pulsar-timing arrays, which have unique access to black-holes at the billion to ten-billion solar mass scale. The accretionary dynamics of supermassive black-hole binaries should yield several tell-tale signatures observable in upcoming synoptic time-domain surveys, as well as gravitational-wave signatures measurable by pulsar timing. Additionally, pulsar-timing arrays are currently placing compelling constraints on modified gravity theories, cosmic strings, and ultralight scalar-field dark matter. I will review my work on these challenges, as well as in the exciting broader arena of gravitational-wave astrophysics, and describe my vision for the next decade of discovery.